Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Mol Biol ; 46(3 Suppl 1): e20230126, 2023.
Article in English | MEDLINE | ID: mdl-38091267

ABSTRACT

Spinal muscular atrophy (SMA) is considered one of the most common autosomal recessive disorders, with an estimated incidence of 1 in 10,000 live births. Testing for SMA has been recommended for inclusion in neonatal screening (NBS) panels since there are several therapies available and there is evidence of greater efficacy when introduced in the pre/early symptomatic phases. In Brazil, the National Neonatal Screening Program tests for six diseases, with a new law issued in 2021 stating that it should incorporate more diseases, including SMA. In the present study, dried blood spot (DBS) samples collected by the Reference Services of Neonatal Screening of RS and SP, to perform the conventional test were also screened for SMA, using real-time PCR, with SALSA MC002 technique. A total of 40,000 samples were analyzed, enabling the identification of four positive cases of SMA, that were confirmed by MLPA. Considering our sampling, Brazil seems to have an incidence comparable to the described in other regions. This work demonstrated that the use of the MC002 technique in samples routinely collected for the conventional NBS program is suitable to screen for SMA in our conditions and can be included in the expansion of the neonatal screening programs.

3.
Orphanet J Rare Dis ; 17(1): 407, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36348386

ABSTRACT

BACKGROUND: Acid sphingomyelinase deficiency (ASMD) is a lysosomal disorder caused by deficiency of acid sphingomyelinase (ASM) leading to the accumulation of sphingomyelin (SM) in a variety of cell types. Lysosphingomyelin (LysoSM) is the de-acetylated form of SM and it has been shown as a biomarker for ASMD in tissues, plasma, and dried blood spots (DBS) and lysosphingomyelin-509 (LysoSM509) is the carboxylated analogue of LysoSM. High levels of Lysosphingomyelin 509 (LysoSM509) have also been shown in ASMD patients. In this study, we report the utility of the quantification of LysoSM and LysoSM509 in DBS of patients from Latin America with ASMD by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). RESULTS: DBS samples from 14 ASMD patients were compared with 15 controls, and 44 general newborns. All patients had their diagnosis confirmed by the quantification of ASM and the measurement of the activity of chitotriosidase. All patients had significantly higher levels of lysoSM and lysoSM509 compared to controls and general newborns. CONCLUSIONS: The quantification of lysosphingolipids in DBS is a valuable tool for the diagnosis of ASMD patients and lysoSM can be useful in the differential diagnosis with NPC. This method is also valuable in the ASMD newborn screening process.


Subject(s)
Niemann-Pick Disease, Type A , Niemann-Pick Diseases , Infant, Newborn , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Sphingomyelin Phosphodiesterase
4.
Int J Neonatal Screen ; 8(3)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35892469

ABSTRACT

Niemann-Pick disease type C (NPC) is a lysosomal disorder caused by impaired cholesterol metabolism. Levels of lysosphingomyelin 509 (LysoSM509) have been shown elevated in dried blood spots (DBS) of NPC and acid sphingomyelinase deficiency patients. In this study, we report our experience using a two-tier approach (1st tier is the quantification of lysoSM509 by ultra-performance liquid chromatography tandem mass spectrometry followed by the 2nd tier with next-generation sequencing of the NPC1 and NPC2 genes). DBS samples from 450 suspected patients were received by the NPC Brazil network. Of these, 33 samples had elevated levels of lysoSM509, and in 25 of them, variants classified as pathogenic, likely pathogenic, or of unknown significance were identified in the NPC1 or NPC2 genes by next-generation sequencing. The quantification of lysoSM509 in DBS as a first-tier test for the diagnosis of NPC followed by molecular analysis of the NPC1 and NPC2 genes almost doubled the detection rate when compared to the performance of chitotriosidase activity as a first-tier biomarker, and it could likely be increased with the addition of a third tier with MLPA of the two genes involved. This strategy seems suitable for the neonatal screening (NBS) of NPC if this disease is eventually adopted by NBS programs.

5.
Mol Genet Metab Rep ; 32: 100888, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35769135

ABSTRACT

Aromatic l-amino acid decarboxylase (AADC, EC 4.1.1.28) deficiency is a rare genetic disorder characterized by developmental delay, oculogyric crises, autonomic dysfunction and other problems, caused by biallelic mutations in the DDC gene leading to deficient activity of aromatic l-amino acid decarboxylase, an enzyme involved in the formation of important neurotransmitters, such as dopamine and serotonin. A clinical development program of gene therapy for AADC deficiency is ongoing. An important step for the success of this therapy is the early and precise identification of the affected individuals, but it has been estimated that around 90% of the cases remain undiagnosed. The availability measurement of the AADC activity is mandatory for an accurate biochemical diagnosis. Based on these statements, our objectives were to develop a liquid chromatography tandem mass spectrometry (LC-MS/MS) method suitable for the determination of the AADC activity, and to evaluate its capacity to confirm the deficiency of AADC in potential patients in Brazil. The AADC activities were measured in plasma samples of seven AADC deficient patients and 35 healthy controls, after enzymatic reaction and LC-MS/MS analysis of dopamine, the main reaction product. The results obtained showed clear discrimination between confirmed AADC deficient patients and healthy controls. The method presented here could be incorporated in the IEM laboratories for confirmation of the diagnosis of when a suspicion of AADC deficiency is present due to clinical signs and/or abnormal biomarkers, including when an increased level of 3-O-methyldopa (3-OMD) is found in dried blood spots (DBS) samples from high-risk patients or from newborn screening programs.

6.
JIMD Rep ; 63(2): 162-167, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35281662

ABSTRACT

Metachromatic leukodystrophy (MLD) is an autosomal recessive lysosomal disorder caused by deficiency of arylsulfatase A (ARSA), leading to an accumulation of sulfatides. Sulfatides have been quantified in urine, dried blood spots (DBS), and tissues of patients with MLD. Newborn screening (NBS) for MLD has already been proposed based on a two-tier approach with the quantification of sulfatides in DBS followed by the quantification of ARSA by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Prenatal screening for MLD is also crucial, and sulfatide quantification in amniotic fluid (AF) can aid diagnosis. The prenatal study was initiated due to a family history of MLD at 19 weeks of gestation. ARSA was quantified in cultured amniocytes. C16:0 sulfatide was quantified by LC-MS/MS in the supernatant of AF. Molecular analysis of the ARSA gene was performed in cultured amniocytes. ARSA was deficient in fetal cells, and C16:0 sulfatides were significantly elevated in comparison to age-matched controls (3-fold higher). Genetic studies identified the c.465+1G>A variant in homozygosis in the ARSA gene. Our study shows that sulfatides can be quantified in the supernatant of AF of MLD fetuses, and it could potentially aid in a faster and more accurate diagnosis of MLD patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...